Benchmark: Adversarial Examples (AEs) Detection

It is a landing page for adversarial examples detection benchmark.

The benchmark

The aim of this benchmark is to have a framework that is able to test the performance of the adversarial examples detection methods under the same attack scenarios. This will help researchers to follow-up the up-to-date progress on the domain. Here, we start with the results published in the review paper; Adversarial Example Detection for DNN Models: A Review and Experimental Comparison.

Fig.1 - Average detection rates (%) for detectors against adversarial examples for each dataset

Results

Note: In this website, we only report the detection rate (DR) and the false positive rate (FPR). Other performance results, like TP, TN, FP, and FN, can be accquired from the genenerated CSV file for each detector (visit the gitub repository).



About

Citation

@article{aldahdooh2022adversarial,
      title={Adversarial Example Detection for DNN Models: A Review and Experimental Comparison}, 
      author={Ahmed Aldahdooh and Wassim Hamidouche and Sid Ahmed Fezza and Olivier Deforges},
      journal={Artificial Intelligence Review},
      year={2022},
      publisher={Springer}
}

Authors

Your contribution

We are welcoming your contribution to enrich this benchmark either by adding new detectors’ performance evaluation or by including current detectors’ performance with more attacks and with different baseline classifiers. Please 1)Follow the instruction here 2)Contact us by opening an isuue to include your updates to the code and to the results.

Datasets and Attacks

Datasets

Dataset Neural Network Model(s)
MNIST
  • Model 1**
CIFAR-10
  • Model 1**
SVHN
  • Model 1**
Tiny-ImageNet
  • Model 1**

**Models Description

Model Name Description
MNIST - Model 1 (98.73) 2 (CONV(32, 3x3)+ReLU) + MaxPool,
2 (CONV(64, 3x3)+ReLU) + MaxPool,
Dense (256) + ReLU + Dropout (0.3), Dense (256) + ReLU,
Dense(10) + Softmax
CIFAR-10 - Model 1 (89.11) 2(Conv(64, 3x3) + BatchNorm + ReLU) + MaxPool + Dropout(0.1),
2(Conv(128, 3x3) + BatchNorm + ReLU) + MaxPool + Dropout(0.2),
2(Conv(256, 3x3) + BatchNorm + ReLU) + MaxPool + Dropout(0.3),
Conv(512, 3x3) + BatchNorm + ReLU + MaxPool + Dropout(0.4),
Dense (512) ,
Dense(10) + Softmax
SVHN - Model 1 (94.98) 2 (CONV(32, 3x3)+ReLU)+MaxPool, 2 (CONV(64, 3x3)+ReLU)+MaxPool,
Dense (512) + ReLU + Dropout (0.3), Dense (128) + ReLU,
Dense(10) + Softmax
Tiny-ImageNet - Model 1 (64.48) DenseNet201

Attacks

Scenario Attack Norm (Un)Targeted Parameters
White-box FGSM L-inf U eps = (8, 16, 32, 64, 80, 128)/255
eps_step = 0.01
BIM L-inf U eps = (8, 16, 32, 64, 80, 128)/255
eps_step = 0.01
iter = eps*255*1.25
PGD L-1 U eps = 5, 10, 15, 20, 25
eps_step = 4
iter = 100
PGD L-2 U eps = 0.25, 0.3125, 0.5, 1, 1.5, 2
eps_step = 0.01
iter = eps*255*1.25
PGD L-inf U eps = (8, 16, 32, 64, 80, 128)/255
eps_step = 0.01
iter = 100
CW L-inf U Confidence = 0
iter=200
CW-HCA L-2 U eps = (8, 16, 32, 64, 80, 128)/255
tol = 1
num_steps = 100
step_size = 1/255
random_start = False
DF L-2 U eps = 1e-6
iter = 100
Black-box Square Attack L-inf U eps = 0.3 (mnist), 0.125 (cifar, svhn, tiny)
iter = 200
HopSkipJump L-2 U max_eval = 100
init_eval = 10
iter = 40
Spatial Transformation - U rotation = 60 (mnist, svhn), 30 (cifar, tiny)
translation = 10 (mnist, svhn),  8 (cifar, tiny)
ZOO L-2 U confidence=0.1
learning_rate=0.01
max_iter=100

Baseline classifiers’ accuracies to the normal training data and the tested attacked data.

  Attack Datasets
MNIST CIFAR SVHN Tiny ImageNet
Clean Data - 98.73 89.11 94.98 64.48
White box FGSM(8) - 14.45 15.06 12.14
FGSM(16) - 13.66 5.91 8.11
FGSM(32) 76.97 11.25 - -
FGSM(64) 13.76 - - -
FGSM(80) 8.64 - - -
BIM(8) - 1.9 1.25 0.3
BIM(16) - 0.61 0 0
BIM(32) 21.84 - - -
BIM(64) 0 - - -
BIM(80) 0 - - -
PGD-L1(5) - 43.45 - -
PGD-L1(10) 65.95 10.56 - -
PGD-L1(15) 25.74 5.27 17.59 44.7
PGD-L1(20) 4.95 - 7.97 31.34
PGD-L1(25) - - 3.73 21.97
PGD-L2(0.25) - 13.97 - -
PGD-L2(0.3125) - 8.19 35.5 -
PGD-L2(0.5) - 5.52 13.26 8.46
PGD-L2(1) 70.54 - 0.8 1.34
PGD-L2(1.5) 18.89 - - -
PGD-L2(2) 0.79 - - -
PGD-L(8) - 0.78 0.8 0.02
PGD-L(16) - 0.28 0 0
PGD-L(32) 19.05 - - -
PGD-L(64) 0 - - -
CW-L 38.98 20.95 23.73 16.64
CW-HCA(8) - 46.51 47.06 39.47
CW-HCA(16) - 18.96 29.06 17.51
CW-HCA(80) 43.36 - - -
CW-HCA(128) 8.64 - - -
DF 4.96 4.8 6.12 0.52
Black box SA 4.66 0 0.7 0.22
HopSkipJump 0 0 0 0
ST 22.04 52.57 17.0 52.28

Acknowledgment

The project is funded by both Region Bretagne (Brittany region), France, and direction generale de l’armement (DGA).